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THE DIRECT MEASUREMENT OF DAMPING COEFFICIENTS

USING AN INVERSE EIGENVALUE METHOD

1. INTRODUCTION

The measurement of system mass, damping, and stiffness coefficients is a classical

engineering problem that has been addressed by a number of researchers (Beck and

Arnold, 1977; Tomlinson, 1979; Fritzen, 1986; Wang, 1988; Lin and Plunkett, 1989;

Cobb and Mitchell, 1990; Wang and Liou, 1990; Lee and Dobson; 1991). Their methods

typically consist of measuring a frequency response function (transfer function) of a system

and then curve fitting a multidegree of freedom model to the magnitude and phase angle of

the system response. During this process, the system parameters are identified. The

measurement of mass and stiffness coefficients is usually straightforward. The inclusion

of damping into a system produces a bounded complex system response, and thus the

extraction of these damping characteristics is more complicated. Since the damping

coefficients are usually small in magnitude compared with system stiffness and mass

parameters, the estimation (or measurement) of the damping coefficients has been

frequently inaccurate.

This report develops a direct measurement technique to obtai- the damping

coefficient of a viscous damper. Using only a bar and a viscous absorber, this uniqL

experiment will measure a viscous damping parameter that is frequency dependent. Thk,

complex-valued natural frequencies of this system are easily identified using a standard

modal test. Unlike previous methods that rely on curve-fit techniques, the form of the

measured eigenvalues can be inverted at each natural frequency to yield a direct

me:aurement of viscous damping coefficient. An experiment is included to demonstrate the

mc d.
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2. SYSTEM MODEL

The system model consists of a one-dimensional axial bar, free at x = 0, and a

viscous damper at x = L (figure 1). A force is applied to the bar at location x = 0. The

addition of the damper to the bar results in a bounded complex system transfer function

(frequency response function, or FRF). The linear second-order wave equation modeling

particle displacement in the bar is

d2 u(x,t) 2 d2 u(x,t) = 8(x)F(t) (1)
dot2 d x2 pA

where u(x,t) is the particle displacement (m), p is the density of the bar (kg/m3 ), s is the

longitudinal wave speed in the bar (m/s), x is the spatial location (m), t is the time (s), A is

the area of the bar (m2 ), F is the applied force (N), and Sis the Dirac delta function (min1 ).

The wave speed s is equal to the quantity of the modulus of elasticity E (N/m 2 ) divided by

the density (s = 47 ). The wave equation assumes a uniform area and negligible internal

loss in the bar.

The free boundary at x = 0 can be modeled as

du
(0,t) = 0. (2)

The boundary condition at x = L is obtained by matching the force at the end of the bar to

the viscous dissipative force in the damper. This expression is

AE- d (L,t) = -c -2(L,t) , (3)
dx dt

where c is the viscous damping coefficient (Ns/m). When c is equal to zero (or infinity),

the boundary at x = L reflects all the wave energy, and the system response is composed

only of standing waves. When c is equal to A/p., the boundary at x = L absorbs all the

wave energy, and the system response is composed only of propagating waves. All other

values of c exhibit some combination of standing and propagating wave energy in their

response.

2
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Figure 1. Beam With Viscous Damper

3. SEPARATION OF VARIABLES

The eigenvalues of the modc--' are found by applying separation of variables to the

homogeneous version of equation (1) and then to the boundary conditions in equations (2)

and (3). Separation of variables assumes that the solution is a product of a function in the

spatial domain multiplied by a function in the time domain:

u(x,t) = X(x)T(t) . (4)

Inserting equation (4) into the homogeneous version of equation (1) produces two

independent ordinary differential equations, each with the complex-valued separation

constant A: namely,

d2X(x) - z 2 X(x) =0 (5)

and

d2T(t) _ s2;L2T(t) 0 (6)

The spatial ordinary differential equation given in equation (5) is solved using the boundary

condition of equation (2):

X(x) = eAX + e-AX (7)

The time-dependent ordinary differential equation yields the following general solution:

T(t) = GeSAI + He-s;. (8)

3
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Applying the boundary condition of equation (3) to equations (5) and (6) yields H = 0 and

the separation constants

1 , [AE-cs] nL.

and

A = 0. (10)

The system eigenvalues An are equal to the separation constant multiplied by the wave

speed s (An = s)n). An eigenvalue plot is shown in figure 2. Each of these eigenvalues is

a function of the damping at the boundary. When the value of damping at the boundary is

increased, the eigenvalues will move to the left in the complex plane. Critical damping for

this system occurs when AE = cs. The inverse function of equation (9) allows the damping

to be computed from the measured eigenvalues. Although equation (10), which represents

a rigid body mode, is not used in the computation of damping, it must be used when the

theoretical transfer function is computed.

4
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Figure 2. Eigenvalue Location in the Complex Plane
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4. DAMPING COMPUTATION

The frequency-dependent damping c. 'fficient c at x = L can be determined at each

bar resonance from the imaginary component of the eigenvalue at that resonance. The real

and imaginary components of the eigenvalues are easily extracted from the measured

transfer function, which is the bar response divided by the input force. The computation of

damping coefficients begins by multiplying equation (9) by the wave speed, s, and is

txpressed as

sL "AE-csl+ n~r.
Re(An)+iIm(An)= loge AE +cs -L (1I)

2L L AE+ csj L

where Re( ) denotes the real part, Im( ) denotes the imaginary part, and the subscript n

denotes the nth resonance. The real-valued terms from equation (11) can be written

separately as

s AE-csRe(An) = -loge-cs] (12)

2L L AE+csJ

Multiplying both sides by 2I/s and then taking the exponential of both sides to remove the

natural log on the right-hand-side gives

AE-cs =exp L Re(An) (13)AEcs] I=

Solving for c in equation (13) yields

AE [-exp[- 2LRe(An)]
C=A 1 _ S+x[RA'I (14)

SS -

where c is in units of Ns/m. The frequency-dependent damping coefficients of the viscous

damper can be computed using equation (14) when the eigenvalues at the system resonance

are known. Each damping value corresponds to the measured resonant frequency of the

bar. Theoretically, when AE = cs, the system is critically damped, and the real parts of the

eigenvalues are located at negative infinity in the complex plane. Experimentally, this very

6
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large damping value is difficult to produce. If this limit could actually be reached, an

increase in the bar area would result in a larger critical damping coefficient, which, in turn,

would shift the real part of the eigenvalue locations of the system from negative infinity to

discrete values. Thus, meaningful calculations of damping values from the measured

system eigenvalues would be insured.

5. EXPERIMENT

The experimental apparatus consisted of a 6.096-m (20-ft) steel bar attached to a

Monroe automotive shock absorber. The bar had a width and height of 0.0254 m (I inch),

which resulted in a cross-sectional area of 0.000645 m2 (1 inch 2 ). The shock absorber, a

type 33116 PCB26J2E, was tested at the standard installed operational length of 4.57 m

(18 inches). The end at x = 0 was excited with a Bruel and Kjaer (B&K) Type 8202 modal

impact hammer containing a B&K Type 8200 force transducer. The bar response was

measured at five locations using a B&K Type 4368 accelerometer. The two signals were

input into a Hewlett-Packard 3562 dual channel spectrum analyzer that calculated the

system frequency response function. This response function used the accelerometer as the

output and the applied force as the input. The analyzer also evaluated the eigenvalues of the

response function. The real component of the eigenvalues was used in the above equations

to determine the damping in the shock absorber.

Table 1 shows the mean and standard deviations of the measured eigenvalues for

the system. These values were calculated from five sets of measurements at five different

locations (x = 1.83, 2.13, 2.74, 3.66, and 4.57 m (6, 7, 9, 12, and 15 ft)). Each

individual eigenvalue was measured from a transfer function composed of five averaged

Fast Fourier transforms. The calculated damping values for the system at the natural

frequencies are shown in table 2. The standard deviations of the damping coefficient at

each measured frequency were 4.4, 15.4, and 12.8 percent for the first, second, and third

resonances, respectively. These minimal deviations indicate that this technique provides a

relatively stable measurement process for the dynamic viscous damping of a device.

7
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The system transfer function can be computed using a modal method (Hull, to

appear 1993), that assumes a harmonic force input at x = 0. This theoretical transfer

function is

U(x,w0) = -2 4 W(x)i) 1 (15)
F0  2pAL ,(i) - An)An pAL A

where o) is the frequency (rad/s), i is the square root of -1, and the eigenfunctions qn(x),

given in equation (7), are evaluated using the n-indexed separation con,-'ant as

(On(x) = eAx + e-'Lx . (16)

A comparison of equation (15) to the experiment is shown in figure 3. The solid line is the

theoretical transfer function and the dashed line is the experiment at x = 2.13 m (7 ft).

Here, equation (15) was evaluated using seven terms ((-3 < n <_ 3), where n is an integr).

The transfer function was evaluated by inserting the calculated damping value at each

resonance into the theoretical eigenvalue. Due to the symmetry of the problem, the

damping values obtained for the positive n modes were used for the corresponding negative

n modes. The damping at the n = 0 mode was evaluated using the value obtained from the

n = I mode. This pwo:ess allowed the frequency-dependent characteristic of the damping

to be incorporated into the theoretical transfer function. The 7.2-percent average difference

between the theory and the measurement was calculated using the equation

% difference Theory - Experiment 0100. (17)

Max(Theory) I

This equation allows percentage differences to be calculated while ,ffectively ignoring the

nulls of the system transfer :`_ iction. It should not be used for systems with very low

damping because the large magnitudes present will tend to distort differences between data

and theory.

Table 3 compares the theoretical imaginary natural frequency to the experimentally

measured natural frequency. The percentage differences in this table were calculated using

8
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%=difference Theory,- Experiment (10018)
Theory I

The comparison between theory and experiment shows very go,.,d agreement. The slight

difference between the theoretical and the experimental results is due to the stiffness

contribution of the shock absorber to the system. The small percentage difference in table 3

ensures that the stiffness of the bar is much greater than the stiffness of the damping

device, which is required if the damper is to be modeled as a pure loss term.

Table 1. Measured System Mean Eigenvalues and Standard Deviations

Eigenvalue Re(An) Re(An) Im(An) lm(An)
(n) mean, std. dev., cr mean,.p std. dev., or

(Hz) (Hz)

1 -5.65 0.25 401. 0.311

2 -26.9 3.21 848. 5.53

3 -21.0 2.68 1230. 17.2

Table 2. Computed System Damping

Eigenvalue Frequency Damping, c Damping

(n) (Hz) (Ns/m) Ratio, 4"

1 401. 1090. 0.042

2 848. 4000. 0.154

3 1230. 4020. 0.155

Table 3. Comparison of Theoretical to Experimental Imaginary Natural Frequencies

Eigenvalue Theoretical Experimental Percent

(n) Frequency Frequency Difference

(Hz) (Hz) %

1 422. 401. 5.0

2 845. 848. 0.4

3 1267. 1230. 2.9

9
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Figure 3. Transfer Function of Acceleration Response Divided by Force Input
Versus Frequency at x = 2.13 Meters
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6. CONCLUSIONS

A new method has been developed to measure frequency-dependent damping

coefficients of one-dimensional devices. This direct measurement technique relies on the

theoretical formulation of the eigenfunctions and eigenvalues of a longitudinal bar with

free-end and damped-end boundary conditions. These eigenvalues are complex functions

dependent on the damping coefficient at the boundary, and on the length, density, elastic

modulus, and cross-sectional area of the bar. The functional form of the eigenvalues can

be inverted such that the damping coefficient at the boundary becomes a function of the real

part of the eigenvalue and beam properties of the system. Such inversion is useful because

the damping coefficient is now a function of measured quantities. The well-known

properties of the bar can be varied through design, and the eigenvalues can be extracted

from a frequency response function (transfer function) of the system. A simple experiment

was developed to measure this function using modal impact techniques. The damping at

the boundary was computed by a closed form solution after the eigenvalues of the

experimental transfer function had been identified. The results of this experiment show that

the standard deviation of the damping coefficient at each measurement frequency ranged

from 4.5 to 15.4 percent. The average deviation between the magnitude of the measured

transfer function and the magnitude of the theoretical transfer function was 7.2 percent.

Such a small deviation indicates a very stable measurement technique.
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